Dewey On-Site Wastewater Treatment

ABCC Projects Gillian Arnold, Henri Bozarth, Ronald Carter, and Cooper Crenshaw

CENE 486C 12/9/2022

Site: Location within Arizona

Figures 1 and 2. Location of Site with respect to highways and Dewey-Humboldt

Site: Fly over View

Figure 3. Google Earth view of Site

Project Overview

- Single family home located in Dewey, AZ
- Objective 1: Provide an on-site wastewater treatment system
- Objective 2: Reuse wastewater for irrigation on-site
- Client: Taylor Layland
- GI/TA: Dr. Jeffrey Heiderscheidt

Figure 4. Lakeside Prefab Cabin

Figure 5. Lakeside Prefab Floorplan

Research of Codes

- Regulations Footnotes
 - Report holds all codes footnoted to specific design area
- Arizona Administrative Code Title 18
 - Part B and Part D: Treated water requirements
 - Part A and Part D: Design standard parameters
 - Part E: Permitting

TITLE 18. ENVIRONMENTAL QUALITY

CHAPTER 9. DEPARTMENT OF ENVIRONMENTAL QUALITY - WATER POLLUTION CONTROL

Figure 6. Arizona Administrative Code-Title 18 Headings

Site Investigation

- Unable to gain site access, data gathered from other sources
- Topographic data from Yavapai County GIS
- Soil characterization data from NRCS Web Soil Survey

Soil Absorption Rate						
sandy loam, loam, or silt loam and the structure moderate or strong						
SAR						
Trench, Chamber, Pit	0.6	gal/day/ft^2				
Bed	0.4	gal/day/ft^2				
Table 1 Soil Adsorpt	ion					

Engineering Properties–Yavapai County, Arizona, Western Part														
Map unit symbol and soil name Pct. of Hydrolo map gic unit group	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Pct Fra	gments	Percent	age passi	ng sieve i	number-	Liquid	Plasticit
			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index		
			In				L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H
MkF—Moano very rocky loam, 15 to 60 percent slopes														
Moano	70	D	0-2	Gravelly loam	GC-GM, SC-SM, GC, SC	A-4, A-6	0- 0- 0	0- 5- 10	65-70- 75	55-60- 65	40-50- 60	35-40- 45	25-30 -35	5-10-15
			2-9	Gravelly loam	GC-GM, SC-SM, GC, SC	A-4, A-6	0-0-0	0- 5- 10	65-70- 75	55-60- 65	40-50- 60	35-40- 45	25-30 -35	5-10-15
			9-16	Unweathered bedrock	-	-	-	-	-	-	-	-	-	-

Figure 7. NRCS Web Soil Survey data Table

Design Flow

- Design Flow
 - Fixtures determined by client and with an image of Prefab house

Figure 5. Lakeside Prefab Floorplan

Design Flow								
Bedrooms	2							
Fixture Count		Multiplier						
Bathtubs	2	2						
Toilets	2	1						
Clothes Washer	1	2						
Sink w/ Dishwasher	1	2						
Total Fixtures	10							
14 or less?	Yes							
Design Volume	1000	gal						
Design Flow	350	gal/day						

Table 2. Design Flow Table

Topographic Map

Alternatives Overview

Alternatives: Septic System

Figure 13. Septic System

Alternatives: Septic System

- Pros
 - Very ease to use
 - Lowest cost system (~\$4500)
 - Low maintenance
 - Is used for other alternatives

- Cons
 - No irrigation effluent (Failure of Objective 2)

Alternatives: Gray Water System

Alternatives: Gray Water System

- Pros
 - No permits needed for AAC
 - No chance for accidental fecal contamination
- Cons
 - More hands-on maintenance
 - Requires in-house pipe separation

Figure 10. Gray Water Block Diagram

Alternatives: Sand Filter

- Runs in series with septic tank
- Compact sand filter measuring 15' x 15'
- Fine sand is used in the filter 0.25-0.75mm
- High quality effluent averaging 5 mg/L of BOD and TSS

Figure 15. Sand Filter System

Alternatives: Sand Filter System

- Pros
 - Irrigation suitable effluent from septic water
 - Low construction cost

- Cons
 - Filter can clog
 - Regular maintenance required (every 3 months)

Alternatives: Aerobic Wastewater Treatment system

- Three chamber Aerobic Septic system, handles 350 gpd
- Diffusion-Based System
- UV disinfection at the end of the system
- High Quality effluent averaging 12 mg/L BOD and 16 mg/L TSS

Alternatives: Aerobic Wastewater Treatment system

- Pros
 - Provides a higher level of treatment
 - Reduces ammonia discharge

- Cons
 - More expensive to operate
 - Mechanical parts can break
 - Requires more maintenance

Figure 12. Anerobic wastewater treatment system Block Diagram

Design Decision Matrix

Design Decision Matrix												
Score (0-10, 0=Bad, Low, Expensive, 10=Good, High, Cheap)												
	Septic System Add.Greywater System Add. Sand Filter Mini WW									NTP		
Criteria	Given Score	Weight	Score after Weighting	Given Score	Weight	Score after Weighting	Given Score	Weight	Score after Weighting	Given Score	Weight	Score after Weighting
Cost of Installation	10	2	20	5	2	10	5	2	10	1	2	2
Cost of Maintenance	10	3	30	7	3	21	6	3	18	1	3	3
Maintenance Required	10	3	30	7	3	21	7	3	21	1	3	3
Treatment Quality	0	5	0	8	5	40	9	5	45	10	5	50
Ease of Use	10	2	20	7	2	14	9	2	18	1	2	2
Total Scores			100			106			112			60

Table 3 and 4. Design Decision Matrix

Score Weighting (Multiplies							
Score by value below)							
Cost of Installation	2						
Cost of Maintenance	3						
Maintenance Required							
Treatment Quality	5						
Ease of Use	2						

18

Surge Tank

- Collects effluent for irrigation
- Valve opens to release water to leach field
- Pump Controller empties tank in intervals
- Not the same as the Sand Filter Dosing Pump Tank

Figure 18. Surge Tank

20

Leach Field

- Overflow for treated water and discharge for septic water
- Designed for 350 gpd septic flow
 - 2-40ft Pipes
- 8 sqft of drainage area per 1ft of pipe

Site Plac

- Special note taken to use contours to advantage for gravity-fed system
- Two pumps needed: sand filter dosing and pump uphill to irrigation at house

Figure 21. System in Place at Site

ABC

Impacts Analysis

Environmental

- + Low discharge rate mitigates environmental damage
- + Aquifer recharge
- + Reduced water use
- Probability of harmful pollutant release (Ex: Pharmaceuticals)
- Possible contamination of water sources (Deep aquifer, nearby ephemeral stream)

Social

- + Freedom to live anywhere without sewer access
- + Less reliance on city utilities
- + More water for others
- Client must now actively think about their wastewater
- Neighbors may have view changed
- No extension of sewer line enforces septic systems for all new neighbors

Economic

- + No sewer fees for client
- + No expensive sewer extension
- + Reduced water cost
- No sewer fees for city, Less water fees
- Repair costs fall on client

Project Cost

- Very rough estimate of cost
- Labor included in septic tank and sand filter costs
- Extra labor cost for all other component's installation
- Total Cost: \$16,559

System Cost									
Total Cost				\$	16,559				
Items to be organized	Units	Сс	ost per unit	Cost					
Yavapai County GIS Fee	1	\$	100	\$	100				
Yavapai County Permits	1	\$	750	\$	750				
				\$	-				
2" HDPE (Ft)	150	\$	2	\$	287				
4" HDPE (Ft)	400	\$	5	\$	2,148				
Septic Tank	1	\$	4,500	\$	4,500				
Sand Filter (Complete System)	1	\$	6,300	\$	6,300				
Surge Tank	1	\$	500	\$	500				
Surge Tank Control System	1	\$	374	\$	374				
Water Level Controller		\$	90						
Pump (Lawn Sprinkler)		\$	234						
Ball Float and Valve		\$	50						
Labor	1	\$	1,600	\$	1,600				

Table 5. System Cost

Sources

- [1] "Lakeside Model," 19 September 2022. [Online]. Available: https://coventryloghomes.com/floorplan/floorplan-tradesman-style-lakeside/.
- [2] Google, "Google Maps," Google, [Online]. Available: https://www.google.com/maps. [Accessed 19 Sept 2022].
- [3] O. o. t. S. o. State, "Title 18," in Arizona Administrative Code, Phoenix, 2019.
- [4] Y. C. D. Services, "Arizona Department of Environmental Quality approved alternate system technologies," in Arizona Admintrative Codes-Title 18, Chapter 9, Article 3, Prescott, Yavapai County Development Services.
- [5] C. f. D. C. a. Prevention, "Slow Sand Filtration," CDC, 10 January 2022. [Online]. Available: https://www.cdc.gov/healthywater/global/household-water-treatment/sand-filtration.html. [Accessed 23 October 2022].
- [6] H. T. G. Z. a. C. J. N. B. Lucia Hernandez Leal, "Comparison of Three Systems for Biological Greywater," Water, vol. 2, pp. 155-169, 2010.
- [7] S. County, "14.10.110 Soil Infiltration Rates," Sacremento County Codes, p. 0812 SS 1, 1990.
- [8] G. Action, "Woodchip Biofilters," Greywater Action, [Online]. Available: https://greywateraction.org/woodchip-biofilter-for-kitchen-sink-wetlands/. [Accessed 23 October 2022].
- [9] EPA, "EPA," September 2000. [Online]. Available: epa.gov/sites/default/files/2015-06/documents/aerobic_treatment_0.pdf. [Accessed 2022].
- [10] Oklahoma State University, "Benifits and Concerns Associated with Aerobic Treatment Systems," March 2017. [Online]. Available:
- https://extension.okstate.edu/fact-sheets/benefits-and-concerns-associated-with-aerobic-treatment-systems.html. [Accessed 2022].
- [11] GroundStone Onsite waste water services, "GroundStone Onsite waste water services," [Online]. Available: https://groundstone.ca/aerobic-septic-system/. [Accessed 2022].
- [12] Delta Treatment systems , "MOdel EA50 Concrete".
- [13] National Tank Outlet, "305 Gallon Norwesco Black Plastic Vertical Water Storage Tank," National Tank Outlet, [Online]. Available:
- https://www.ntotank.com/305gallon-norwesco-black-vertical-water-tank-
- x9023077?gclid=CjwKCAjw8JKbBhBYEiwAs3sxN6CDHv0Rc0ZrNwu44GSGAyWgp75B7HydGSk3Bl2kLNRHvmtnGiMl4BoCYbkQAvD_BwE. [Accessed 8 November 2022].
- [14] L. Engineering, "Time to Empty or Drain a Tank, Pond, Reservoir Containing Water or other Liquid," LMNO Engineering, 2014. [Online]. Available: https://www.lmnoeng.com/Tank/TankTime.php. [Accessed 8 November 2022].
- [15] Y. County, "Yavapai County Interactive Map," Yavapai GIS, [Online]. Available: https://gis.yavapaiaz.gov/v4/map.aspx?search=. [Accessed 19 Sept 2022].
- [16] A. D. o. E. Quality, "On-site Wastewater Treatment-Delegated Authority," [Online]. Available: https://static.azdeq.gov/er/appsubmittal.pdf. [Accessed 21 Sept 2022].
- [17] A. S. o. T. a. Materials, "ASTM D1452-80," ASTM, 2000.
- [18] A. S. f. T. a. Materials, "ASTM D5879-95," ASTM, 2003.
- [19] S. D. R. G. a. C. W. Lukas Huhn, "Greywater Treatment in Sand and Gravel Filters," Rural Communities Development Agency, Women Engage for a Common Future, and the United Nations Environmental Programme, 2015.

